o
    7?ef                     @   sP   d Z ddlm  mZ ddlmZ ddlmZ eddG dd deZ	e	Z
dS )	zAverage pooling 2D layer.    N)	Pooling2D)keras_exportzkeras.layers.AveragePooling2Dzkeras.layers.AvgPool2Dc                       s*   e Zd ZdZ				d fdd	Z  ZS )AveragePooling2Da  Average pooling operation for spatial data.

    Downsamples the input along its spatial dimensions (height and width)
    by taking the average value over an input window
    (of size defined by `pool_size`) for each channel of the input.
    The window is shifted by `strides` along each dimension.

    The resulting output when using `"valid"` padding option has a shape
    (number of rows or columns) of:
    `output_shape = math.floor((input_shape - pool_size) / strides) + 1`
    (when `input_shape >= pool_size`)

    The resulting output shape when using the `"same"` padding option is:
    `output_shape = math.floor((input_shape - 1) / strides) + 1`

    For example, for `strides=(1, 1)` and `padding="valid"`:

    >>> x = tf.constant([[1., 2., 3.],
    ...                  [4., 5., 6.],
    ...                  [7., 8., 9.]])
    >>> x = tf.reshape(x, [1, 3, 3, 1])
    >>> avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2),
    ...    strides=(1, 1), padding='valid')
    >>> avg_pool_2d(x)
    <tf.Tensor: shape=(1, 2, 2, 1), dtype=float32, numpy=
      array([[[[3.],
               [4.]],
              [[6.],
               [7.]]]], dtype=float32)>

    For example, for `stride=(2, 2)` and `padding="valid"`:

    >>> x = tf.constant([[1., 2., 3., 4.],
    ...                  [5., 6., 7., 8.],
    ...                  [9., 10., 11., 12.]])
    >>> x = tf.reshape(x, [1, 3, 4, 1])
    >>> avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2),
    ...    strides=(2, 2), padding='valid')
    >>> avg_pool_2d(x)
    <tf.Tensor: shape=(1, 1, 2, 1), dtype=float32, numpy=
      array([[[[3.5],
               [5.5]]]], dtype=float32)>

    For example, for `strides=(1, 1)` and `padding="same"`:

    >>> x = tf.constant([[1., 2., 3.],
    ...                  [4., 5., 6.],
    ...                  [7., 8., 9.]])
    >>> x = tf.reshape(x, [1, 3, 3, 1])
    >>> avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2),
    ...    strides=(1, 1), padding='same')
    >>> avg_pool_2d(x)
    <tf.Tensor: shape=(1, 3, 3, 1), dtype=float32, numpy=
      array([[[[3.],
               [4.],
               [4.5]],
              [[6.],
               [7.],
               [7.5]],
              [[7.5],
               [8.5],
               [9.]]]], dtype=float32)>

    Args:
      pool_size: integer or tuple of 2 integers,
        factors by which to downscale (vertical, horizontal).
        `(2, 2)` will halve the input in both spatial dimension.
        If only one integer is specified, the same window length
        will be used for both dimensions.
      strides: Integer, tuple of 2 integers, or None.
        Strides values.
        If None, it will default to `pool_size`.
      padding: One of `"valid"` or `"same"` (case-insensitive).
        `"valid"` means no padding. `"same"` results in padding evenly to
        the left/right or up/down of the input such that output has the same
        height/width dimension as the input.
      data_format: A string,
        one of `channels_last` (default) or `channels_first`.
        The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape
        `(batch, height, width, channels)` while `channels_first`
        corresponds to inputs with shape
        `(batch, channels, height, width)`.
        When unspecified, uses
        `image_data_format` value found in your Keras config file at
         `~/.keras/keras.json` (if exists) else 'channels_last'.
        Defaults to 'channels_last'.

    Input shape:
      - If `data_format='channels_last'`:
        4D tensor with shape `(batch_size, rows, cols, channels)`.
      - If `data_format='channels_first'`:
        4D tensor with shape `(batch_size, channels, rows, cols)`.

    Output shape:
      - If `data_format='channels_last'`:
        4D tensor with shape `(batch_size, pooled_rows, pooled_cols, channels)`.
      - If `data_format='channels_first'`:
        4D tensor with shape `(batch_size, channels, pooled_rows, pooled_cols)`.
       r   Nvalidc                    s&   t  jtjjf||||d| d S )N)	pool_sizestridespaddingdata_format)super__init__tfnnZavg_pool)selfr   r	   r
   r   kwargs	__class__ k/home/www/facesmatcher.com/pyenv/lib/python3.10/site-packages/keras/src/layers/pooling/average_pooling2d.pyr      s   
zAveragePooling2D.__init__)r   Nr   N)__name__
__module____qualname____doc__r   __classcell__r   r   r   r   r      s    gr   )r   Ztensorflow.compat.v2compatv2r   Z'keras.src.layers.pooling.base_pooling2dr   Z tensorflow.python.util.tf_exportr   r   Z	AvgPool2Dr   r   r   r   <module>   s   z