o
    &?e^L                     @   s   d Z ddlZddlZddlmZ ddlmZ ddlm	Z	 ddl
mZmZmZ 				dd
dZdddZdddZdd Z				dddZdS )z)
Methods to characterize image textures.
    N   )check_nD)gray2rgb)img_as_float   )
_glcm_loop_local_binary_pattern_multiblock_lbpFc           
      C   sR  t | d t |dd t |dd t| } |  }t| jtjr&td| jtjtj	fvr7|du r7tdt| jtj
rJt| dk rJtd	|du rPd
}||krXtdtj|tjd}tj|tjd}tj||t|t|ftjdd}t| |||| |rt|d}|| }|r|tj}tj|ddd}	d|	|	dk< ||	 }|S )a|  Calculate the gray-level co-occurrence matrix.

    A gray level co-occurrence matrix is a histogram of co-occurring
    grayscale values at a given offset over an image.

    .. versionchanged:: 0.19
               `greymatrix` was renamed to `graymatrix` in 0.19.

    Parameters
    ----------
    image : array_like
        Integer typed input image. Only positive valued images are supported.
        If type is other than uint8, the argument `levels` needs to be set.
    distances : array_like
        List of pixel pair distance offsets.
    angles : array_like
        List of pixel pair angles in radians.
    levels : int, optional
        The input image should contain integers in [0, `levels`-1],
        where levels indicate the number of gray-levels counted
        (typically 256 for an 8-bit image). This argument is required for
        16-bit images or higher and is typically the maximum of the image.
        As the output matrix is at least `levels` x `levels`, it might
        be preferable to use binning of the input image rather than
        large values for `levels`.
    symmetric : bool, optional
        If True, the output matrix `P[:, :, d, theta]` is symmetric. This
        is accomplished by ignoring the order of value pairs, so both
        (i, j) and (j, i) are accumulated when (i, j) is encountered
        for a given offset. The default is False.
    normed : bool, optional
        If True, normalize each matrix `P[:, :, d, theta]` by dividing
        by the total number of accumulated co-occurrences for the given
        offset. The elements of the resulting matrix sum to 1. The
        default is False.

    Returns
    -------
    P : 4-D ndarray
        The gray-level co-occurrence histogram. The value
        `P[i,j,d,theta]` is the number of times that gray-level `j`
        occurs at a distance `d` and at an angle `theta` from
        gray-level `i`. If `normed` is `False`, the output is of
        type uint32, otherwise it is float64. The dimensions are:
        levels x levels x number of distances x number of angles.

    References
    ----------
    .. [1] M. Hall-Beyer, 2007. GLCM Texture: A Tutorial
           https://prism.ucalgary.ca/handle/1880/51900
           DOI:`10.11575/PRISM/33280`
    .. [2] R.M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for
           image classification", IEEE Transactions on Systems, Man, and
           Cybernetics, vol. SMC-3, no. 6, pp. 610-621, Nov. 1973.
           :DOI:`10.1109/TSMC.1973.4309314`
    .. [3] M. Nadler and E.P. Smith, Pattern Recognition Engineering,
           Wiley-Interscience, 1993.
    .. [4] Wikipedia, https://en.wikipedia.org/wiki/Co-occurrence_matrix


    Examples
    --------
    Compute 2 GLCMs: One for a 1-pixel offset to the right, and one
    for a 1-pixel offset upwards.

    >>> image = np.array([[0, 0, 1, 1],
    ...                   [0, 0, 1, 1],
    ...                   [0, 2, 2, 2],
    ...                   [2, 2, 3, 3]], dtype=np.uint8)
    >>> result = graycomatrix(image, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4],
    ...                       levels=4)
    >>> result[:, :, 0, 0]
    array([[2, 2, 1, 0],
           [0, 2, 0, 0],
           [0, 0, 3, 1],
           [0, 0, 0, 1]], dtype=uint32)
    >>> result[:, :, 0, 1]
    array([[1, 1, 3, 0],
           [0, 1, 1, 0],
           [0, 0, 0, 2],
           [0, 0, 0, 0]], dtype=uint32)
    >>> result[:, :, 0, 2]
    array([[3, 0, 2, 0],
           [0, 2, 2, 0],
           [0, 0, 1, 2],
           [0, 0, 0, 0]], dtype=uint32)
    >>> result[:, :, 0, 3]
    array([[2, 0, 0, 0],
           [1, 1, 2, 0],
           [0, 0, 2, 1],
           [0, 0, 0, 0]], dtype=uint32)

    r   r   	distancesanglesz^Float images are not supported by graycomatrix. Convert the image to an unsigned integer type.Nz{The levels argument is required for data types other than uint8. The resulting matrix will be at least levels ** 2 in size.r   z)Negative-valued images are not supported.   zUThe maximum grayscale value in the image should be smaller than the number of levels.dtypeC)r   order)r   r   r      r   r   TaxisZkeepdims)r   npascontiguousarraymax
issubdtyper   floating
ValueErrorZuint8Zint8Zsignedintegeranyfloat64zeroslenZuint32r   Z	transposeastypesum)
imager
   r   ZlevelsZ	symmetricZnormedZ	image_maxPZPt	glcm_sums r$   X/home/www/facesmatcher.com/pyenv/lib/python3.10/site-packages/skimage/feature/texture.pygraycomatrix   s<   
_
r&   contrastc                 C   s  t | dd | j\}}}}||krtd|dkrtd|dkr%td| tj} tj| ddd	}d
||dk< | | } tjd|d|f \}}|dkrU|| d }	n'|dkrat|| }	n|dkrpdd|| d   }	n|dv runt| d|dkrtj| d dd}
t	|
}|S |dkrtj| d dd}|S |dkr(tj
||ftjd}tt||d
d
d
f}tt|d
|d
d
f}|tj||  dd }|tj||  dd }t	tj| |d  dd}t	tj| |d  dd}tj| ||  dd}|dk }d||dk < d
||< | }|| || ||   ||< |S |dv r?|	||d
d
f}	tj| |	 dd}|S )a	  Calculate texture properties of a GLCM.

    Compute a feature of a gray level co-occurrence matrix to serve as
    a compact summary of the matrix. The properties are computed as
    follows:

    - 'contrast': :math:`\sum_{i,j=0}^{levels-1} P_{i,j}(i-j)^2`
    - 'dissimilarity': :math:`\sum_{i,j=0}^{levels-1}P_{i,j}|i-j|`
    - 'homogeneity': :math:`\sum_{i,j=0}^{levels-1}\frac{P_{i,j}}{1+(i-j)^2}`
    - 'ASM': :math:`\sum_{i,j=0}^{levels-1} P_{i,j}^2`
    - 'energy': :math:`\sqrt{ASM}`
    - 'correlation':
        .. math:: \sum_{i,j=0}^{levels-1} P_{i,j}\left[\frac{(i-\mu_i) \
                  (j-\mu_j)}{\sqrt{(\sigma_i^2)(\sigma_j^2)}}\right]

    Each GLCM is normalized to have a sum of 1 before the computation of
    texture properties.

    .. versionchanged:: 0.19
           `greycoprops` was renamed to `graycoprops` in 0.19.

    Parameters
    ----------
    P : ndarray
        Input array. `P` is the gray-level co-occurrence histogram
        for which to compute the specified property. The value
        `P[i,j,d,theta]` is the number of times that gray-level j
        occurs at a distance d and at an angle theta from
        gray-level i.
    prop : {'contrast', 'dissimilarity', 'homogeneity', 'energy',             'correlation', 'ASM'}, optional
        The property of the GLCM to compute. The default is 'contrast'.

    Returns
    -------
    results : 2-D ndarray
        2-dimensional array. `results[d, a]` is the property 'prop' for
        the d'th distance and the a'th angle.

    References
    ----------
    .. [1] M. Hall-Beyer, 2007. GLCM Texture: A Tutorial v. 1.0 through 3.0.
           The GLCM Tutorial Home Page,
           https://prism.ucalgary.ca/handle/1880/51900
           DOI:`10.11575/PRISM/33280`

    Examples
    --------
    Compute the contrast for GLCMs with distances [1, 2] and angles
    [0 degrees, 90 degrees]

    >>> image = np.array([[0, 0, 1, 1],
    ...                   [0, 0, 1, 1],
    ...                   [0, 2, 2, 2],
    ...                   [2, 2, 3, 3]], dtype=np.uint8)
    >>> g = graycomatrix(image, [1, 2], [0, np.pi/2], levels=4,
    ...                  normed=True, symmetric=True)
    >>> contrast = graycoprops(g, 'contrast')
    >>> contrast
    array([[0.58333333, 1.        ],
           [1.25      , 2.75      ]])

       r"   z'num_level and num_level2 must be equal.r   znum_dist must be positive.znum_angle must be positive.r   Tr   r   r'   r   dissimilarityhomogeneityg      ?)ASMenergycorrelationz is an invalid propertyr,   )r   r+   r-   r   gV瞯<)r'   r)   r*   )r   shaper   r   r   r   r    Zogridabssqrtr   arrayrangeZreshape)r"   propZ	num_levelZ
num_level2Znum_distZ	num_angler#   IJweightsasmresultsZdiff_iZdiff_jZstd_iZstd_jZcovZmask_0Zmask_1r$   r$   r%   graycoprops   s`   @


r9   defaultc                 C   sr   t | d tdtdtdtdtdd}t| jtjr$td tj| tj	d	} t
| ||||  }|S )
aS	  Compute the local binary patterns (LBP) of an image.

    LBP is a visual descriptor often used in texture classification.

    Parameters
    ----------
    image : (M, N) array
        2D grayscale image.
    P : int
        Number of circularly symmetric neighbor set points (quantization of
        the angular space).
    R : float
        Radius of circle (spatial resolution of the operator).
    method : str {'default', 'ror', 'uniform', 'nri_uniform', 'var'}, optional
        Method to determine the pattern:

        ``default``
            Original local binary pattern which is grayscale invariant but not
            rotation invariant.
        ``ror``
            Extension of default pattern which is grayscale invariant and
            rotation invariant.
        ``uniform``
            Uniform pattern which is grayscale invariant and rotation
            invariant, offering finer quantization of the angular space.
            For details, see [1]_.
        ``nri_uniform``
            Variant of uniform pattern which is grayscale invariant but not
            rotation invariant. For details, see [2]_ and [3]_.
        ``var``
            Variance of local image texture (related to contrast)
            which is rotation invariant but not grayscale invariant.

    Returns
    -------
    output : (M, N) array
        LBP image.

    References
    ----------
    .. [1] T. Ojala, M. Pietikainen, T. Maenpaa, "Multiresolution gray-scale
           and rotation invariant texture classification with local binary
           patterns", IEEE Transactions on Pattern Analysis and Machine
           Intelligence, vol. 24, no. 7, pp. 971-987, July 2002
           :DOI:`10.1109/TPAMI.2002.1017623`
    .. [2] T. Ahonen, A. Hadid and M. Pietikainen. "Face recognition with
           local binary patterns", in Proc. Eighth European Conf. Computer
           Vision, Prague, Czech Republic, May 11-14, 2004, pp. 469-481, 2004.
           http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6851
           :DOI:`10.1007/978-3-540-24670-1_36`
    .. [3] T. Ahonen, A. Hadid and M. Pietikainen, "Face Description with
           Local Binary Patterns: Application to Face Recognition",
           IEEE Transactions on Pattern Analysis and Machine Intelligence,
           vol. 28, no. 12, pp. 2037-2041, Dec. 2006
           :DOI:`10.1109/TPAMI.2006.244`
    r   DRUNV)r:   ZroruniformZnri_uniformvarzApplying `local_binary_pattern` to floating-point images may give unexpected results when small numerical differences between adjacent pixels are present. It is recommended to use this function with images of integer dtype.r   )r   ordr   r   r   r   warningswarnr   r   r   lower)r!   r"   r<   methodmethodsoutputr$   r$   r%   local_binary_pattern  s   
9rI   c                 C   s$   t j| t jd} t| ||||}|S )a  Multi-block local binary pattern (MB-LBP).

    The features are calculated similarly to local binary patterns (LBPs),
    (See :py:meth:`local_binary_pattern`) except that summed blocks are
    used instead of individual pixel values.

    MB-LBP is an extension of LBP that can be computed on multiple scales
    in constant time using the integral image. Nine equally-sized rectangles
    are used to compute a feature. For each rectangle, the sum of the pixel
    intensities is computed. Comparisons of these sums to that of the central
    rectangle determine the feature, similarly to LBP.

    Parameters
    ----------
    int_image : (N, M) array
        Integral image.
    r : int
        Row-coordinate of top left corner of a rectangle containing feature.
    c : int
        Column-coordinate of top left corner of a rectangle containing feature.
    width : int
        Width of one of the 9 equal rectangles that will be used to compute
        a feature.
    height : int
        Height of one of the 9 equal rectangles that will be used to compute
        a feature.

    Returns
    -------
    output : int
        8-bit MB-LBP feature descriptor.

    References
    ----------
    .. [1] L. Zhang, R. Chu, S. Xiang, S. Liao, S.Z. Li. "Face Detection Based
           on Multi-Block LBP Representation", In Proceedings: Advances in
           Biometrics, International Conference, ICB 2007, Seoul, Korea.
           http://www.cbsr.ia.ac.cn/users/scliao/papers/Zhang-ICB07-MBLBP.pdf
           :DOI:`10.1007/978-3-540-74549-5_2`
    r   )r   r   Zfloat32r	   )Z	int_imagercwidthheightlbp_coder$   r$   r%   multiblock_lbpk  s   *rO   r   r   r   r   gGz?gQ?      ?c	                 C   sj  t j|t jd}t j|t jd}t | }	t| jdk r t| }	t|	}	d}
t |
}
|
dddf  |9  < |
dddf  |9  < || }|| }t	|
D ]c\}}|\}}|| }|| }|dd| > @ }|rd| |	||| ||| f  ||  }||	||| ||| f< qOd| |	||| ||| f  ||  }||	||| ||| f< qO|	S )a  Multi-block local binary pattern visualization.

    Blocks with higher sums are colored with alpha-blended white rectangles,
    whereas blocks with lower sums are colored alpha-blended cyan. Colors
    and the `alpha` parameter can be changed.

    Parameters
    ----------
    image : ndarray of float or uint
        Image on which to visualize the pattern.
    r : int
        Row-coordinate of top left corner of a rectangle containing feature.
    c : int
        Column-coordinate of top left corner of a rectangle containing feature.
    width : int
        Width of one of 9 equal rectangles that will be used to compute
        a feature.
    height : int
        Height of one of 9 equal rectangles that will be used to compute
        a feature.
    lbp_code : int
        The descriptor of feature to visualize. If not provided, the
        descriptor with 0 value will be used.
    color_greater_block : tuple of 3 floats
        Floats specifying the color for the block that has greater
        intensity value. They should be in the range [0, 1].
        Corresponding values define (R, G, B) values. Default value
        is white (1, 1, 1).
    color_greater_block : tuple of 3 floats
        Floats specifying the color for the block that has greater intensity
        value. They should be in the range [0, 1]. Corresponding values define
        (R, G, B) values. Default value is cyan (0, 0.69, 0.96).
    alpha : float
        Value in the range [0, 1] that specifies opacity of visualization.
        1 - fully transparent, 0 - opaque.

    Returns
    -------
    output : ndarray of float
        Image with MB-LBP visualization.

    References
    ----------
    .. [1] L. Zhang, R. Chu, S. Xiang, S. Liao, S.Z. Li. "Face Detection Based
           on Multi-Block LBP Representation", In Proceedings: Advances in
           Biometrics, International Conference, ICB 2007, Seoul, Korea.
           http://www.cbsr.ia.ac.cn/users/scliao/papers/Zhang-ICB07-MBLBP.pdf
           :DOI:`10.1007/978-3-540-74549-5_2`
    r   r   ))rS   )rS   r   )rS   r   r   )r   r   )r   r   )r   rS   )r   rS   Nr   r      )
r   Zasarrayr   copyr   r.   r   r   r1   	enumerate)r!   rJ   rK   rL   rM   rN   Zcolor_greater_blockZcolor_less_blockalpharH   Zneighbor_rect_offsetsZcentral_rect_rZcentral_rect_cZelement_numoffsetZoffset_rZoffset_cZcurr_rZcurr_cZhas_greater_value	new_valuer$   r$   r%   draw_multiblock_lbp  s>   ;

rZ   )NFF)r'   )r:   )r   rP   rQ   rR   )__doc__rC   numpyr   Z_shared.utilsr   colorr   utilr   Z_texturer   r   r	   r&   r9   rI   rO   rZ   r$   r$   r$   r%   <module>   s&    
 

}M0