o
    &?ep>                     @   sp   d dl Z d dlZd dlmZ d dlmZmZmZm	Z	m
Z
mZ d dlmZ dgZ		ddd	Z			dddZdS )    N)LinAlgError)get_blas_funcsqrsolvesvd	qr_insertlstsq)make_systemgcrotmk Fc	           "   
   C   s  |du rdd }|du rdd }t g d|f\}	}
}}|g}g }d}tj}|t| }tjt||f|jd}tjd|jd}tjd	|jd}t|jj}d
}t	|D ]<}|rg|t|k rg|| \}}n.|rv|t|krv||}d}n|s||t| kr|||t|   \}}n||d }d}|du r|| |}n|
 }||}t|D ]\}}|
||}||||f< |	|||jd | }qtj|d |jd}t|D ]\}}|
||}|||< |	|||jd | }q||||d < tjddd d|d  }W d   n	1 sw   Y  t|r|||}|d || ks*d}|| || tj|d |d f|jdd}||d|d d|d f< d||d |d f< tj|d |f|jdd} || d|d ddf< t|| ||ddd
d\}}t|d }||k s|r qqUt|||f st t|d|d d|d f |dd|d f  \}}!}!}!|ddd|d f }|||||||fS )a  
    FGMRES Arnoldi process, with optional projection or augmentation

    Parameters
    ----------
    matvec : callable
        Operation A*x
    v0 : ndarray
        Initial vector, normalized to nrm2(v0) == 1
    m : int
        Number of GMRES rounds
    atol : float
        Absolute tolerance for early exit
    lpsolve : callable
        Left preconditioner L
    rpsolve : callable
        Right preconditioner R
    cs : list of (ndarray, ndarray)
        Columns of matrices C and U in GCROT
    outer_v : list of ndarrays
        Augmentation vectors in LGMRES
    prepend_outer_v : bool, optional
        Whether augmentation vectors come before or after
        Krylov iterates

    Raises
    ------
    LinAlgError
        If nans encountered

    Returns
    -------
    Q, R : ndarray
        QR decomposition of the upper Hessenberg H=QR
    B : ndarray
        Projections corresponding to matrix C
    vs : list of ndarray
        Columns of matrix V
    zs : list of ndarray
        Columns of matrix Z
    y : ndarray
        Solution to ||H y - e_1||_2 = min!
    res : float
        The final (preconditioned) residual norm

    Nc                 S      | S Nr   xr   r   e/home/www/facesmatcher.com/pyenv/lib/python3.10/site-packages/scipy/sparse/linalg/_isolve/_gcrotmk.pylpsolve@      z_fgmres.<locals>.lpsolvec                 S   r   r   r   r   r   r   r   rpsolveC   r   z_fgmres.<locals>.rpsolveaxpydotscalnrm2)dtype)   r   )r   r   Fr      r   ignore)ZoverdivideTFr   ordercol)whichZoverwrite_qruZcheck_finite)r   r   )r   npnanlenZzerosr   ZonesZfinfoepsrangecopy	enumerateshapeZerrstateisfiniteappendr   absr   r   Zconj)"matvecZv0matolr   r   csZouter_vZprepend_outer_vr   r   r   r   vszsyresBQRr'   Z	breakdownjzwZw_normicalphaZhcurvZQ2ZR2_r   r   r   _fgmres   s   1





>rB   h㈵>     oldestc           A   
   C   s$  t | |||\} }}}}t| std|dvr"td||du r0tjdtdd |}| j}|j}|	du r<g }	|du rB|}d\}}}|du rP|	 }n||| }t
g d	||f\}}}}||}|d
krs|}||d
fS |
rdd |	D |	dd< |	r3|	jdd d tj| jd
 t|	f|jdd}g }d
}|	r|	d
\}}|du r||}||dd|f< |d7 }|| |	st|dddd\}}}~t|j}g } tt|D ]F}|||  }t|D ]}!||||!  ||jd
 ||!|f  }qt|||f dt|d  k r q#|d|||f  |}| | qtt|| ddd |	dd< |	rbt
ddg|f\}}|	D ]\}}|||}"||||jd
 |"}||||jd
 |" }qBt|D ]}#|durr|| ||}$t||| }%|$|%kr|#d
ks|	r||| }||}$|$|%krd}# qs|t|t|	 d
 }&dd |	D }z t|||$ |&|t||| |$ |d\}}}'}(})}*}+|*|$9 }*W n ty   Y  qsw |)d
 |*d
  },t|)dd |*dd D ]\}-}"||-|,|,jd
 |"},q|'|*}.t|	|.D ]\}/}0|/\}}|||,|,jd
 |0 },q|||*}1|(d
 |1d
  }2t|(dd |1dd D ]\}3}4||3|2|2jd
 |4}2q>zd||2 }5t|5s^t W n ttfyl   Y qfw ||5|2}2||5|,},||2|}6||2||jd
 |6 }||,||jd
 |6}|dkrt|	|kr|	r|	d
= t|	|kr|	sn|dkrjt|	|krj|	rjt|ddddf j|'jj}7t|7\}8}9}:g };t |8ddd|d f jD ]~\}}<|	d
 \}}||<d
  }||<d
  }t|	dd |<dd D ]\}=}>|=\}?}@||?||jd
 |>}||@||jd
 |>}q|;D ] \}?}@||?|}5||?||jd
 |5 }||@||jd
 |5 }q(||}5|d|5 |}|d|5 |}|;||f q|;|	dd< |	|2|,f qf|	d|	 f |
rd d |	D |	dd< |||#d fS )!a,  
    Solve a matrix equation using flexible GCROT(m,k) algorithm.

    Parameters
    ----------
    A : {sparse matrix, ndarray, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : ndarray
        Right hand side of the linear system. Has shape (N,) or (N,1).
    x0 : ndarray
        Starting guess for the solution.
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is `tol`.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    maxiter : int, optional
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M : {sparse matrix, ndarray, LinearOperator}, optional
        Preconditioner for A.  The preconditioner should approximate the
        inverse of A. gcrotmk is a 'flexible' algorithm and the preconditioner
        can vary from iteration to iteration. Effective preconditioning
        dramatically improves the rate of convergence, which implies that
        fewer iterations are needed to reach a given error tolerance.
    callback : function, optional
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.
    m : int, optional
        Number of inner FGMRES iterations per each outer iteration.
        Default: 20
    k : int, optional
        Number of vectors to carry between inner FGMRES iterations.
        According to [2]_, good values are around m.
        Default: m
    CU : list of tuples, optional
        List of tuples ``(c, u)`` which contain the columns of the matrices
        C and U in the GCROT(m,k) algorithm. For details, see [2]_.
        The list given and vectors contained in it are modified in-place.
        If not given, start from empty matrices. The ``c`` elements in the
        tuples can be ``None``, in which case the vectors are recomputed
        via ``c = A u`` on start and orthogonalized as described in [3]_.
    discard_C : bool, optional
        Discard the C-vectors at the end. Useful if recycling Krylov subspaces
        for different linear systems.
    truncate : {'oldest', 'smallest'}, optional
        Truncation scheme to use. Drop: oldest vectors, or vectors with
        smallest singular values using the scheme discussed in [1,2].
        See [2]_ for detailed comparison.
        Default: 'oldest'

    Returns
    -------
    x : ndarray
        The solution found.
    info : int
        Provides convergence information:

        * 0  : successful exit
        * >0 : convergence to tolerance not achieved, number of iterations

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import gcrotmk
    >>> R = np.random.randn(5, 5)
    >>> A = csc_matrix(R)
    >>> b = np.random.randn(5)
    >>> x, exit_code = gcrotmk(A, b)
    >>> print(exit_code)
    0
    >>> np.allclose(A.dot(x), b)
    True

    References
    ----------
    .. [1] E. de Sturler, ''Truncation strategies for optimal Krylov subspace
           methods'', SIAM J. Numer. Anal. 36, 864 (1999).
    .. [2] J.E. Hicken and D.W. Zingg, ''A simplified and flexible variant
           of GCROT for solving nonsymmetric linear systems'',
           SIAM J. Sci. Comput. 32, 172 (2010).
    .. [3] M.L. Parks, E. de Sturler, G. Mackey, D.D. Johnson, S. Maiti,
           ''Recycling Krylov subspaces for sequences of linear systems'',
           SIAM J. Sci. Comput. 28, 1651 (2006).

    z$RHS must contain only finite numbers)rF   smallestzInvalid value for 'truncate': Nzscipy.sparse.linalg.gcrotmk called without specifying `atol`. The default value will change in the future. To preserve current behavior, set ``atol=tol``.r   )category
stacklevel)NNNr   r   c                 S      g | ]\}}d |fqS r   r   .0r>   ur   r   r   
<listcomp>?      zgcrotmk.<locals>.<listcomp>c                 S   s   | d d uS )Nr   r   )cur   r   r   <lambda>D  s    zgcrotmk.<locals>.<lambda>)keyr   r    r   TZeconomic)Zoverwrite_amodeZpivotingg-q=)r   r   g      ?r   r   r   c                 S   s   g | ]\}}|qS r   r   rK   r   r   r   rN     s    )r   r1   r2   rF   rG   c                 S   rJ   r   r   )rL   czuzr   r   r   rN     rO   )!r	   r$   r,   all
ValueErrorwarningswarnDeprecationWarningr/   r)   r   sortemptyr+   r&   r   popr-   r   listTr(   r.   zipmaxrB   r   r   FloatingPointErrorZeroDivisionErrorr   r   r*   )AAbZx0ZtolmaxiterMcallbackr0   kZCUZ	discard_Ctruncater1   r   postprocessr/   Zpsolver   r   r   rr   Zb_normCusr:   r>   rM   r8   r9   Pr2   Znew_usr=   ZycZj_outerbetaZbeta_tolmlr7   r3   r4   r5   ZpresZuxr;   ZbyrP   ZbychyZcxr@   Zhycr?   gammaDWsigmaVZnew_CUr<   cupZwpcpupr   r   r   r
      s  `

 


(" 



"
"




 &"
)NNr   r   F)NrC   rD   NNrE   NNFrF   N)rX   numpyr$   Znumpy.linalgr   Zscipy.linalgr   r   r   r   r   r   Z!scipy.sparse.linalg._isolve.utilsr	   __all__rB   r
   r   r   r   r   <module>   s    
 +