o
    ?emm                     @   s  d Z ddlZddlmZ ddlmZ ddlm	Z	 ddl
mZ ddl
mZ ddl
mZ dd	l
mZ dd
l
mZ ddl
mZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddl m!Z! e!dgde"ddd							d2ddZ#dd Z$dd  Z%d!d" Z&d#d$ Z'd%d& Z(d'd( Z)d)d* Z*e!dg dej+dd+ddd,e"ddd							d2d-d.Z,e-d/d0e#j e,_ d1e,j v sJ dS )3zFunctional operations.    N)ag_ctx)api)context)constant_op)ops)sparse_tensor)tensor_shape)tensor_spec)	type_spec)	array_ops)tensor_array_ops)variable_scope)
while_loop)ragged_tensor)
tf_logging)deprecation)nest)variable_utils)	tf_exportmap_fn)v1zUse fn_output_signature insteaddtypeTFc	                    s  du r|t stdj dt  }	|	r|sd}n|	s&|s&d}n|	s6|dkr6ttjdd d}t	  t
 }
t|
dkrMtd d	d
 |
D  fdddu rhdd
 D }ndd
 t
D fdd}t|d|
 |	rt }d}|jdu r|dd  d}dd
 |
D }
|
d }t|dr|j}|jdur|jdk rtdt|
}tt|d  dd }|dd D ]}|tt| dd  q|jpt |d d fdd
|D dd
 t!|D t"#d}t$}g }|D ]}|%t&j'|j(d||jd q fdd}t)j)fdd|||f|||d\}}dd
 |D }|D ]}|*t+|,| dd  qP|	rp|rp|d t-||}||}|W  d   S 1 sw   Y  dS )a3-  Transforms `elems` by applying `fn` to each element unstacked on axis 0.

  See also `tf.scan`.

  `map_fn` unstacks `elems` on axis 0 to obtain a sequence of elements;
  calls `fn` to transform each element; and then stacks the transformed
  values back together.

  #### Mapping functions with single-Tensor inputs and outputs

  If `elems` is a single tensor and `fn`'s signature is `tf.Tensor->tf.Tensor`,
  then `map_fn(fn, elems)` is equivalent to
  `tf.stack([fn(elem) for elem in tf.unstack(elems)])`.  E.g.:

  >>> tf.map_fn(fn=lambda t: tf.range(t, t + 3), elems=tf.constant([3, 5, 2]))
  <tf.Tensor: shape=(3, 3), dtype=int32, numpy=
    array([[3, 4, 5],
           [5, 6, 7],
           [2, 3, 4]], dtype=int32)>

  `map_fn(fn, elems).shape = [elems.shape[0]] + fn(elems[0]).shape`.

  #### Mapping functions with multi-arity inputs and outputs

  `map_fn` also supports functions with multi-arity inputs and outputs:

  * If `elems` is a tuple (or nested structure) of tensors, then those tensors
    must all have the same outer-dimension size (`num_elems`); and `fn` is
    used to transform each tuple (or structure) of corresponding slices from
    `elems`.  E.g., if `elems` is a tuple `(t1, t2, t3)`, then `fn` is used to
    transform each tuple of slices `(t1[i], t2[i], t3[i])`
    (where `0 <= i < num_elems`).

  * If `fn` returns a tuple (or nested structure) of tensors, then the
    result is formed by stacking corresponding elements from those structures.

  #### Specifying `fn`'s output signature

  If `fn`'s input and output signatures are different, then the output
  signature must be specified using `fn_output_signature`.  (The input and
  output signatures are differ if their structures, dtypes, or tensor types do
  not match).  E.g.:

  >>> tf.map_fn(fn=tf.strings.length,  # input & output have different dtypes
  ...           elems=tf.constant(["hello", "moon"]),
  ...           fn_output_signature=tf.int32)
  <tf.Tensor: shape=(2,), dtype=int32, numpy=array([5, 4], dtype=int32)>
  >>> tf.map_fn(fn=tf.strings.join,  # input & output have different structures
  ...           elems=[tf.constant(['The', 'A']), tf.constant(['Dog', 'Cat'])],
  ...           fn_output_signature=tf.string)
  <tf.Tensor: shape=(2,), dtype=string,
   numpy=array([b'TheDog', b'ACat'], dtype=object)>

  `fn_output_signature` can be specified using any of the following:

  * A `tf.DType` or `tf.TensorSpec` (to describe a `tf.Tensor`)
  * A `tf.RaggedTensorSpec` (to describe a `tf.RaggedTensor`)
  * A `tf.SparseTensorSpec` (to describe a `tf.sparse.SparseTensor`)
  * A (possibly nested) tuple, list, or dict containing the above types.

  #### RaggedTensors

  `map_fn` supports `tf.RaggedTensor` inputs and outputs.  In particular:

  * If `elems` is a `RaggedTensor`, then `fn` will be called with each
    row of that ragged tensor.
    * If `elems` has only one ragged dimension, then the values passed to
      `fn` will be `tf.Tensor`s.
    * If `elems` has multiple ragged dimensions, then the values passed to
      `fn` will be `tf.RaggedTensor`s with one fewer ragged dimension.

  * If the result of `map_fn` should be a `RaggedTensor`, then use a
    `tf.RaggedTensorSpec` to specify `fn_output_signature`.
    * If `fn` returns `tf.Tensor`s with varying sizes, then use a
      `tf.RaggedTensorSpec` with `ragged_rank=0` to combine them into a
      single ragged tensor (which will have ragged_rank=1).
    * If `fn` returns `tf.RaggedTensor`s, then use a `tf.RaggedTensorSpec`
      with the same `ragged_rank`.

  >>> # Example: RaggedTensor input
  >>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]])
  >>> tf.map_fn(tf.reduce_sum, rt, fn_output_signature=tf.int32)
  <tf.Tensor: shape=(4,), dtype=int32, numpy=array([6, 0, 9, 6], dtype=int32)>

  >>> # Example: RaggedTensor output
  >>> elems = tf.constant([3, 5, 0, 2])
  >>> tf.map_fn(tf.range, elems,
  ...           fn_output_signature=tf.RaggedTensorSpec(shape=[None],
  ...                                                   dtype=tf.int32))
  <tf.RaggedTensor [[0, 1, 2], [0, 1, 2, 3, 4], [], [0, 1]]>

  Note: `map_fn` should only be used if you need to map a function over the
  *rows* of a `RaggedTensor`.  If you wish to map a function over the
  individual values, then you should use:

  * `tf.ragged.map_flat_values(fn, rt)`
    (if fn is expressible as TensorFlow ops)
  * `rt.with_flat_values(map_fn(fn, rt.flat_values))`
    (otherwise)

  E.g.:

  >>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]])
  >>> tf.ragged.map_flat_values(lambda x: x + 2, rt)
  <tf.RaggedTensor [[3, 4, 5], [], [6, 7], [8]]>

  #### SparseTensors

  `map_fn` supports `tf.sparse.SparseTensor` inputs and outputs.  In particular:

  * If `elems` is a `SparseTensor`, then `fn` will be called with each row
    of that sparse tensor. In particular, the value passed to `fn` will be a
    `tf.sparse.SparseTensor` with one fewer dimension than `elems`.

  * If the result of `map_fn` should be a `SparseTensor`, then use a
    `tf.SparseTensorSpec` to specify `fn_output_signature`.  The individual
    `SparseTensor`s returned by `fn` will be stacked into a single
    `SparseTensor` with one more dimension.

  >>> # Example: SparseTensor input
  >>> st = tf.sparse.SparseTensor([[0, 0], [2, 0], [2, 1]], [2, 3, 4], [4, 4])
  >>> tf.map_fn(tf.sparse.reduce_sum, st, fn_output_signature=tf.int32)
  <tf.Tensor: shape=(4,), dtype=int32, numpy=array([2, 0, 7, 0], dtype=int32)>

  >>> # Example: SparseTensor output
  >>> tf.sparse.to_dense(
  ...     tf.map_fn(tf.sparse.eye, tf.constant([2, 3]),
  ...               fn_output_signature=tf.SparseTensorSpec(None, tf.float32)))
  <tf.Tensor: shape=(2, 3, 3), dtype=float32, numpy=
    array([[[1., 0., 0.],
            [0., 1., 0.],
            [0., 0., 0.]],
           [[1., 0., 0.],
            [0., 1., 0.],
            [0., 0., 1.]]], dtype=float32)>

  Note: `map_fn` should only be used if you need to map a function over the
  *rows* of a `SparseTensor`.  If you wish to map a function over the nonzero
  values, then you should use:

  * If the function is expressible as TensorFlow ops, use:
    ```python
    tf.sparse.SparseTensor(st.indices, fn(st.values), st.dense_shape)
    ```
  * Otherwise, use:
    ```python
    tf.sparse.SparseTensor(st.indices, tf.map_fn(fn, st.values),
                           st.dense_shape)
    ```

  #### `map_fn` vs. vectorized operations

  `map_fn` will apply the operations used by `fn` to each element of `elems`,
  resulting in `O(elems.shape[0])` total operations.  This is somewhat
  mitigated by the fact that `map_fn` can process elements in parallel.
  However, a transform expressed using `map_fn` is still typically less
  efficient than an equivalent transform expressed using vectorized operations.

  `map_fn` should typically only be used if one of the following is true:

  * It is difficult or expensive to express the desired transform with
    vectorized operations.
  * `fn` creates large intermediate values, so an equivalent vectorized
    transform would take too much memory.
  * Processing elements in parallel is more efficient than an equivalent
    vectorized transform.
  * Efficiency of the transform is not critical, and using `map_fn` is
    more readable.

  E.g., the example given above that maps `fn=lambda t: tf.range(t, t + 3)`
  across `elems` could be rewritten more efficiently using vectorized ops:

  >>> elems = tf.constant([3, 5, 2])
  >>> tf.range(3) + tf.expand_dims(elems, 1)
  <tf.Tensor: shape=(3, 3), dtype=int32, numpy=
    array([[3, 4, 5],
           [5, 6, 7],
           [2, 3, 4]], dtype=int32)>

  In some cases, `tf.vectorized_map` can be used to automatically convert a
  function to a vectorized equivalent.

  #### Eager execution

  When executing eagerly, `map_fn` does not execute in parallel even if
  `parallel_iterations` is set to a value > 1. You can still get the
  performance benefits of running a function in parallel by using the
  `tf.function` decorator:

  >>> fn=lambda t: tf.range(t, t + 3)
  >>> @tf.function
  ... def func(elems):
  ...   return tf.map_fn(fn, elems, parallel_iterations=3)
  >>> func(tf.constant([3, 5, 2]))
  <tf.Tensor: shape=(3, 3), dtype=int32, numpy=
    array([[3, 4, 5],
           [5, 6, 7],
           [2, 3, 4]], dtype=int32)>


  Note: if you use the `tf.function` decorator, any non-TensorFlow Python
  code that you may have written in your function won't get executed. See
  `tf.function` for more  details. The recommendation would be to debug without
  `tf.function` but switch to it to get performance benefits of running `map_fn`
  in parallel.

  Args:
    fn: The callable to be performed.  It accepts one argument, which will have
      the same (possibly nested) structure as `elems`.  Its output must have the
      same structure as `fn_output_signature` if one is provided; otherwise it
      must have the same structure as `elems`.
    elems: A tensor or (possibly nested) sequence of tensors, each of which will
      be unstacked along their first dimension.  `fn` will be applied to the
      nested sequence of the resulting slices.  `elems` may include ragged and
      sparse tensors. `elems` must consist of at least one tensor.
    dtype: Deprecated: Equivalent to `fn_output_signature`.
    parallel_iterations: (optional) The number of iterations allowed to run in
      parallel. When graph building, the default value is 10. While executing
      eagerly, the default value is set to 1.
    back_prop: (optional) False disables support for back propagation.
    swap_memory: (optional) True enables GPU-CPU memory swapping.
    infer_shape: (optional) False disables tests for consistent output shapes.
    name: (optional) Name prefix for the returned tensors.
    fn_output_signature: The output signature of `fn`. Must be specified if
      `fn`'s input and output signatures are different (i.e., if their
      structures, dtypes, or tensor types do not match).
      `fn_output_signature` can be specified using any of the following:

      * A `tf.DType` or `tf.TensorSpec` (to describe a `tf.Tensor`)
      * A `tf.RaggedTensorSpec` (to describe a `tf.RaggedTensor`)
      * A `tf.SparseTensorSpec` (to describe a `tf.sparse.SparseTensor`)
      * A (possibly nested) tuple, list, or dict containing the above types.

  Returns:
    A tensor or (possibly nested) sequence of tensors.  Each tensor stacks the
    results of applying `fn` to tensors unstacked from `elems` along the first
    dimension, from first to last.  The result may include ragged and sparse
    tensors.

  Raises:
    TypeError: if `fn` is not callable or the structure of the output of
      `fn` and `fn_output_signature` do not match.
    ValueError: if the lengths of the output of `fn` and `fn_output_signature`
      do not match, or if the `elems` does not contain any tensor.

  Examples:

    >>> elems = np.array([1, 2, 3, 4, 5, 6])
    >>> tf.map_fn(lambda x: x * x, elems)
    <tf.Tensor: shape=(6,), dtype=int64, numpy=array([ 1,  4,  9, 16, 25, 36])>

    >>> elems = (np.array([1, 2, 3]), np.array([-1, 1, -1]))
    >>> tf.map_fn(lambda x: x[0] * x[1], elems, fn_output_signature=tf.int64)
    <tf.Tensor: shape=(3,), dtype=int64, numpy=array([-1,  2, -3])>

    >>> elems = np.array([1, 2, 3])
    >>> tf.map_fn(lambda x: (x, -x), elems,
    ...          fn_output_signature=(tf.int64, tf.int64))
    (<tf.Tensor: shape=(3,), dtype=int64, numpy=array([1, 2, 3])>,
     <tf.Tensor: shape=(3,), dtype=int64, numpy=array([-1, -2, -3])>)
  NzThe provided function z% is not callable.fn must be callable.
      zSetting parallel_iterations > 1 has no effect when executing eagerly. Consider calling map_fn with tf.function to execute fn in parallel.r   zlelems must be a Tensor or (possibly nested) sequence of Tensors. Got {}, which does not contain any Tensors.c                 S   s   g | ]}t |qS  )r
   type_spec_from_value).0er   r   ]/home/www/facesmatcher.com/pyenv/lib/python3.10/site-packages/tensorflow/python/ops/map_fn.py
<listcomp>      zmap_fn.<locals>.<listcomp>c                       t  | S Nr   Zpack_sequence_asx)elemsr   r   <lambda>      zmap_fn.<locals>.<lambda>c                 S   s   g | ]}t | qS r   )_most_general_compatible_type_unbatch)r   sr   r   r   r     s    
c                 S   s   g | ]}t |qS r   )_dtype_to_spec)r   dr   r   r   r     s    c                    r!   r"   r#   r$   )fn_output_signaturer   r   r'     r(   mapFc                 S   s   | j S r"   )Zdevice)opr   r   r   r'     s    Tc                 S   s   g | ]	}t j|d dqS )elem)name)r   Zconvert_to_tensor_or_compositer   tr   r   r   r         shapez=Elements in elems must be 1+ dimensional Tensors, not scalarsc                    s    g | ]}t j|j d ddqS )FT)r   sizedynamic_sizeinfer_shape)r   TensorArrayr   r3   nr   r   r     s    
c                 S   s   g | ]	\}}| |qS r   )Zunstack)r   tar4   r   r   r   r     r5   )r   r7   r8   r9   Zelement_shapec           
         s    fddD }t |}|}t }t|}||}tp%| t|}t|}	 fddt	||	D } d |fS )a{  The loop body of map_fn.

      Args:
        i: the loop counter
        tas: the flat TensorArray accumulator list

      Returns:
        (i + 1, tas): the updated counter + updated TensorArrays

      Raises:
        TypeError: if fn_output_signature and result_value structure don't match
        ValueType: if fn_output_signature and result_value lengths don't match
      c                    s   g | ]}|  qS r   )read)r   r=   ir   r   r     r    z+map_fn.<locals>.compute.<locals>.<listcomp>c                    s   g | ]
\}}|  |qS r   )write)r   r=   valuer?   r   r   r     s    r   )
_elems_value_batchable_to_flatautograph_ctxZcontrol_status_ctx	autographZ
tf_convertr   Zassert_same_structureflatten_result_value_flat_to_batchablezip)
r@   Ztaselems_value_batchableelems_value_flatZelems_valuer   Zautographed_fnZresult_valueresult_value_flatresult_value_batchable)r&   elems_batchable_taelems_flat_signatureelems_unflattenfnr.   result_flat_signaturer?   r   compute  s"   

zmap_fn.<locals>.computec                    s   |  k S r"   r   )r@   _r;   r   r   r'     s    )parallel_iterations	back_propswap_memoryZmaximum_iterationsc                 S   s   g | ]}|  qS r   )stack)r   rr   r   r   r     s    ).callable	TypeError__name__r   Zexecuting_eagerlyloggingZlog_first_nWARNr   Zconvert_variables_to_tensorsr   rF   len
ValueErrorformatr   Z
name_scopevsZget_variable_scopeZcaching_deviceZset_caching_devicehasattrr6   Zndims_elems_flat_to_batchabler   Z	DimensionZdimension_value	get_shapeZwith_rank_at_leastZassert_is_compatible_withrB   r   rH   r   Zconstant/_result_flat_signature_to_batchable_tensor_specappendr   r:   r   r   	set_shapeZTensorShapeZconcatenate_result_batchable_to_flat)rP   r&   r   rT   rU   rV   r9   r2   r.   Zin_graph_mode
elems_flatZresult_unflattenZvarscopeZ varscope_caching_device_was_noneZ
first_elemZelems_static_shapeelems_batchableZn_staticZtensorr@   Zresult_batchable_tensor_specZresult_batchable_taspecrR   rS   Zr_aresult_batchablerX   result_flatresultr   )r&   rM   rN   rO   rP   r.   r<   rQ   r   r   *   s     9










&c                 C   s   t | tjstd | } | S r"   )
isinstancer
   ZTypeSpecr	   
TensorSpec)r-   r   r   r   r,     s   r,   c                 C   sZ   t | tjrtd| jS t | tjrtd| j| j| jS t | t	j
r+t	
d| jS | S )z9Returns the most general TypeSpec compatible with `spec`.N)ro   r	   rp   r   r   ZRaggedTensorSpecZ_dtypeZ_ragged_rankZ_row_splits_dtyper   ZSparseTensorSpec)rk   r   r   r   r)     s   r)   c                 C   s8   g }| D ]}t |tjstd|f ||j q|S )z@Converts result_flat_signature -> result_batchable_tensor_specs.z"map_fn can not generate %s outputs)ro   r
   BatchableTypeSpecrZ   extend_flat_tensor_specs)rQ   Ztensor_specsrk   r   r   r   re   "  s   re   c                 C   sH   g }| D ]}t |}t|t jstd||f ||| q|S )z'Converts elems_flat -> elems_batchable.z(map_fn can not consume %s inputs: got %r)r
   r   ro   rq   rZ   rr   Z_to_batched_tensor_list)ri   rj   Zelems_tensorrk   r   r   r   rc   ,  s   
rc   c                 C   s`   g }d}|D ]}|  }| ||t|j  }||| |t|7 }q|t| ks.J |S )z3Converts elems_value_batchable -> elems_value_flat.r   )r*   r^   rs   rf   _from_compatible_tensor_list)rI   rN   rJ   r@   rk   Ztensor_listr   r   r   rC   9  s   rC   c                 C   sf   g }t | |D ])\}}t|tjr|| q||s(td|t||f |	|
| q|S )z5Converts result_value_flat -> result_value_batchable.zError in map_fn:
  Expected `fn` to return a:
    %s
  But it returned a:
    %s
    (value=%s)
  To fix, update the `fn_output_signature` (or `dtype`) argument to `map_fn`.)rH   ro   r	   rp   rf   Zis_compatible_withr_   r
   r   rr   Z_to_tensor_list)rK   rQ   rL   Zr_valueZr_specr   r   r   rG   G  s   
rG   c              	   C   sZ   g }d}|D ]}t |j}|||| |||   ||7 }q|t | ks+J |S )z)Converts result_batchable -> result_flat.r   )r^   rs   rf   Z_batchrt   )rl   rQ   Z
batch_sizerm   r@   rk   Znum_tensorsr   r   r   rh   Y  s   


rh   zback_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.map_fn(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.map_fn(fn, elems)))Z	warn_oncerU   c	           	   
   C   s$   |du r|}t | |||||||dS )zGTransform `elems` by applying `fn` to each element unstacked on axis 0.N)rP   r&   r.   rT   rU   rV   r9   r2   )r   )	rP   r&   r   rT   rU   rV   r9   r2   r.   r   r   r   	map_fn_v2i  s   ru   z (  back_prop: \(optional\) )(.*)z:\1Deprecated: prefer using `tf.stop_gradient` instead.  \2z'prefer using `tf.stop_gradient` instead)NNTFTNN).__doc__reZ tensorflow.python.autograph.corer   rD   Z tensorflow.python.autograph.implr   rE   Ztensorflow.python.eagerr   Ztensorflow.python.frameworkr   r   r   r   r	   r
   Ztensorflow.python.opsr   r   r   ra   r   Ztensorflow.python.ops.raggedr   Ztensorflow.python.platformr   r\   Ztensorflow.python.utilr   r   r   Z tensorflow.python.util.tf_exportr   Zdeprecated_argsr   r,   r)   re   rc   rC   rG   rh   Zdeprecated_arg_valuesru   subr   r   r   r   <module>   s~   
   c

	